7,287 research outputs found

    Reconstruction of cosmological density and velocity fields in the Lagrangian Zel'dovich Approximation

    Get PDF
    We present a method for reconstructing cosmological densityn for and velocity fields using the Lagrangian Zel'dovich formalism. . The method involves finding the least action solution for straight line particle paths in an evolving density field. Our starting point is the final, evolved density , so that we are in effect carrying out the standard Zel'dovich Approximation based process in reverse. Using a simple numerical algorithm we are able to minimise the action for the trajectories of several million particles. We apply our method to the evolved density taken from N-body simulations of different cold dark matter dominated universes, testing both the prediction for the present day velocity field and for the initial density field. The method is easy to apply, reproduces the accuracy of the forward Zel'dovich Approximation, and also works directly in redshift space with minimal modification.Comment: 13 pages with only 2 (out 9) figures. MNRAS in press. New Appendix shows the relation between shell crossing and PIZA. A completed version with all 9 figures available by anonymous ftp at ftp://bessel.mps.ohio-state.edu/pub/racc/piza.ps.gz (USA) or ftp://ftp-astro.physics.ox.ac.uk/pub/eg/piza3.ps.gz (UK

    Unified model of ultracold molecular collisions

    Full text link
    A scattering model is developed for ultracold molecular collisions, which allows inelastic processes, chemical reactions, and complex formation to be treated in a unified way. All these scattering processes and various combinations of them are possible in ultracold molecular gases, and as such this model will allow the rigorous parametrization of experimental results. In addition we show how, once extracted, these parameters can be related to the physical properties of the system, shedding light on fundamental aspects of molecular collision dynamics.Comment: 16 Pages, 5 Figure

    Altering an extended phenotype reduces intraspecific male aggression and can maintain diversity in cichlid fish

    Get PDF
    Reduced male aggression towards different phenotypes generating negative frequency-dependent intrasexual selection has been suggested as a mechanism to facilitate the invasion and maintenance of novel phenotypes in a population. To date, the best empirical evidence for the phenomenon has been provided by laboratory studies on cichlid fish with different colour polymorphisms. Here we experimentally tested the hypothesis in a natural population of Lake Malawi cichlid fish, in which males build sand-castles (bowers) to attract females during seasonal leks. We predicted that if bower shape plays an important role in male aggressive interactions, aggression among conspecific males should decrease when their bower shape is altered. Accordingly, we allocated randomly chosen bowers in a Nyassachromis cf. microcephalus lek into three treatments: control, manipulated to a different shape, and simulated manipulation. We then measured male behaviours and bower shape before and after these treatments. We found that once bower shape was altered, males were involved in significantly fewer aggressive interactions with conspecific males than before manipulation. Mating success was not affected. Our results support the idea that an extended phenotype, such as bower shape, can be important in maintaining polymorphic populations. Specifically, reduced male conspecific aggression towards males with different extended phenotypes (here, bower shapes) may cause negative frequency-dependent selection, allowing the invasion and establishment of a new phenotype (bower builder). This could help our understanding of mechanisms of diversification within populations, and in particular, the overall diversification of bower shapes within Lake Malawi cichlids

    Using Perturbative Least Action to Recover Cosmological Initial Conditions

    Get PDF
    We introduce a new method for generating initial conditions consistent with highly nonlinear observations of density and velocity fields. Using a variant of the Least Action method, called Perturbative Least Action (PLA), we show that it is possible to generate several different sets of initial conditions, each of which will satisfy a set of highly nonlinear observational constraints at the present day. We then discuss a code written to test and apply this method and present the results of several simulations.Comment: 24 pages, 6 postscript figures. Accepted for publication in Astrophysical Journa
    • …
    corecore